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Abstract. 

Exposure to wildland-fire smoke is associated with negative effects on human health. However, 

these effects are poorly quantified. Accurately attributing health endpoints to wildland-fire 

smoke requires determining the locations, concentrations, and durations of smoke events. Most 

current methods for determining these smoke-event properties (ground-based measurements, 5 

satellite observations, and chemical-transport modeling) are limited temporally, spatially, and/or 

by their level of accuracy. In this work, we explore using social-media posts regarding smoke, 

haze, and air quality from Facebook to determine population-level exposure for the summer of 

2015 in the western US. We compare this de-identified, aggregated Facebook data to several 

other datasets that are commonly used for estimating exposure, such as satellite observations 10 

(MODIS aerosol optical depth and Hazard Mapping System smoke plumes), surface particulate-

matter measurements, and model (WRF-Chem) simulated surface concentrations. After adding 

population-weighted spatial smoothing to the Facebook data, this dataset is well-correlated (R2 

generally above 0.5) with these other methods in smoke-impacted regions. Removing days with 

considerable cloud coverage further improves correlations of Facebook data to traditional 15 

exposure datasets, which implies that the population is less aware of smoke on cloudy days 

relative to sunny days. The Facebook dataset is better correlated with surface measurements of 

PM2.5 at a majority of monitoring sites (163 of 293 sites) than the satellite observations and our 

model simulation are. We also present an example case for Washington state in 2015, where we 

combine this Facebook dataset with MODIS observations and WRF-Chem simulated PM2.5 in a 20 

regression model. We show that the addition of the Facebook data improves the regression 

model’s ability to predict surface concentrations.  This high correlation of the Facebook data 

with surface monitors and our Washington state example suggests that this social-media-based 

proxy can be used to estimate smoke exposure in locations without direct ground-based 

particulate-matter measurements.  25 

 

1 Introduction 

Exposure to poor air quality is associated with negative impacts on human health 

(Dockery et al., 1993; Pope, 2007). As such, the Environmental Protection Agency (EPA) has set 

air-quality standards to limit concentration levels of pollutants in the United States, which has 30 

led to reductions in anthropogenic emissions. However, particulate matter (PM) also has natural 
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and transboundary sources, which are more difficult to control. A large natural source of PM in 

the western US is from wildland fires, which are comprised of wildfires and prescribed burning 

on natural lands. Wildfire smoke drives much of the interannual variability in total PM2.5 ( PM 

with an aerodynamic diameter < 2.5 µm, Jaffe et al., 2008).  The 2011 National Emission 

Inventory (NEI2011, epa.gov) attributes ~20 % of the primary PM2.5 emissions in the US to 5 

wildfires, 15 % to prescribed fires, and 1.5 % to agricultural fires (epa.gov). Lelieveld et al. 

(2015) used concentration-response functions derived from previous studies of total ambient PM 

(and smoking and household air pollution) to estimate that ~2500 premature mortalities are 

attributable to exposure to biomass-burning (a broad category that includes wildland, prescribed, 

and agricultural fires) PM2.5 per year in the US. However, the assumed toxicity and dose 10 

associated with wildland-fire PM were assumed to be the same as all other PM sources. Thus, it 

is important to determine the health responses to wildland-fire-specific smoke. 

Accurately attributing health outcomes to wildland-fire smoke requires a determination of 

the exposed population. Studies of health impacts often rely on (I) fixed-site monitors (e.g. 3), 

which are sparse in much of the western US; (II) atmospheric model simulations (Alman et al., 15 

2016; Fann et al., 2012; Johnston et al., 2012; Rappold et al., 2012), which can provide 

concentration estimates at high spatial resolution, but may be biased by their emission 

inventories (Davis et al., 2015; Zhang et al., 2014), spatial resolution (Misenis and Zhang, 2010; 

Punger and West, 2013; Thompson et al., 2014; Thompson and Selin, 2012), or input 

meteorological fields (Cuchiara et al., 2014; Srinivas et al., 2015; Žabkar et al., 2013); or (III) 20 

satellite products (Henderson et al., 2011; Rappold et al., 2011), which do not on their own 

provide surface-level concentrations. Thus, there is a growing effort to include multiple datasets 

(e.g. 14, 15) and create blended products (e.g. 16–19) that can exploit the strengths of each 

dataset. However, all of these methods still only provide estimates of ambient concentration 

levels and not of actual exposure. Additionally, attributing health effects specifically to wildland-25 

fire-smoke exposure can be difficult as it requires separating the contribution of smoke from total 

PM2.5 (Liu et al., 2015).  

In this work, we propose the use of de-identified, aggregated Facebook data to determine 

population-level exposure for the summer of 2015, which was a particularly smoky year in the 

US (See Supplementary Figure 1 for number of fire and smoke days). We show that, region-30 

wide, this dataset is better correlated with surface measurements of PM2.5 than other traditional 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-26, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Published: 19 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



4 

 

mean of estimate exposure, suggesting that it has the potential to be used to estimate smoke 

exposure in locations without direct ground-based particulate-matter measurements. We also 

present a test case for Washington state, where we demonstrate that a regression model that 

includes our Facebook dataset is better able to predict surface PM2.5 than a regression model that 

only has model-simulated PM2.5 and satellite AOD. We also compare our results to another 5 

measurement of internet behavior, Google Trends, as a proxy for air quality exposure. 

The use of social media in risk exposure assessment is a growing field. In the past 

decade, data mining of social media has provided a wealth of information to news outlets, 

marketing firms, and the social sciences (Burke and Kraut, 2016; Golder and Macy, 2011; 

Kosinski et al., 2013; Masedu et al., 2014; Youyou et al., 2015). Only recently has social media 10 

and internet behavior been used for research in both the natural sciences and public health.  

Social media and internet behavior have been proposed to track epidemics and earthquakes (e.g., 

14–16),  fires (Abel et al., 2012; Bedo et al., 2015; De Longueville et al., 2009; Kent and Jr, 

2013), and poor air quality (Jiang et al., 2015; Mei et al., 2014; Tao et al., 2016), and to predict 

hospitalizations (Ram et al., 2015). A paper by Sachdeva et al. (2016) also proposed the use of 15 

Twitter content and geographic information to estimate wildfire smoke concentrations. In this 

paper, we show how Facebook posting trends “track” significant changes in air quality, such as 

is associated with dense smoke plumes from large wildfires. Furthermore, we show that 

Facebook posting trends could also improve estimates of smoke exposure by serving as an extra 

constraint on more traditional methods for estimating exposure.     20 

 

2 Methods and Datasets 

2.1 Internet Behavior Datasets 

Our dataset is the percentage of Facebook posters in each US city that used any of the 

following words: “smoke”, “smoky”, “smokey”, “haze”, “hazey”, or “air quality”, while 25 

attempting to filter out reference to cigarette smoking and other phrases not related to air quality 

(see Supporting Information). The search generates de-identified and aggregated data; no 

individual’s text was viewed by researchers. Our goal was to focus on wildfire smoke because 

wildfire smoke often leads to extreme air quality degradation over broad regions of the US in the 

summertime. However, because this list includes “air quality” and “haze,” this search criterion 30 

could also highlight trends in Facebook posts discussing air quality degradation due to other 
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emissions, such as fossil-fuel combustion. Geographic location at the city level is determined by 

IP address. Data was provided for 5 June through 27 October 2015. 

We analyzed this dataset of the de-identified, aggregated percent of Facebook posters that 

matched our search criteria at the city, town, or other municipality level (See Supplementary 

Figure 2a for location centroids, referred to as “raw” throughout text). In order to estimate the 5 

magnitude of the response between these specific locations, we generate a fixed 0.25° grid using 

an inverse distance weighting with a scale distance (or search neighborhood, ds) of 20 km and a 

power of six. The scale distance and power are set to sharply reduce the influence of more-

distant observations and were chosen based on the grid resolution in order to maintain the 

regional variability from the Facebook posting dataset. Additionally, some of these locations are 10 

in areas with small populations (and potentially few posters on Facebook), which could skew our 

results. Therefore, we translate the raw Facebook data to a standard latitude/longitude grid using 

an area-smoothing procedure with data weighted by the population of the municipality (See 

Supplementary Figure 2 for example). Our resulting gridded data is determined using the 

following formula:  15 
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Where the percent of Facebook posts (fi) at a grid location (i) is the sum of all of the products of 

the population (Pc) and the original percent of Facebook posts (fc) at each “Facebook 

municipality” (c), weighted by the inverse of the distance (d) between location (i) and the 

Facebook municipality (c).  20 

 We also analyzed Google Trends data (google.com/trends/) as a proxy for exposure. We 

searched for “air quality”, “wildfire”, “smoke”, “pollution”, “haze”, “smog”, and “ozone” for the 

time period of 1 May – 31 October 2015 for every designated media area (DMA) in the western 

U.S. Google Trends results are determined from a random sample of searches with location 

determined by IP address and duplicates (when the same person searches for the same term 25 

multiple times) removed. Results are aggregated and de-identified, but limited to popular terms, 

with low values appearing as zero (highest values are 100). Therefore, the popularity of a search 
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term impacts the spatial resolution available of the aggregated results (country, DMA, or city). 

To compare to surface measurements, we identified the DMA in which each measurement site is 

located.  

2.2 Surface Measurements and Satellite Products 

We compare these datasets to several other datasets that are commonly used for 5 

estimating exposure to wildland-fire smoke. We use 24-hour average concentrations of total 

PM2.5 mass from EPA Air Quality System (AQS, data from epa.gov/aqs) and Interagency 

Monitoring of Protected Visual Environments (IMPROVE, data from 

views.cira.colostate.edu/fed/) sites. At IMPROVE network sites, surface measurements of 

atmospheric composition are taken over a 24-hour period every third day (Malm et al., 1994). 10 

Depending on the measurement method at the site, 24-hr average concentrations are provided 

daily, every third day, or every sixth day at EPA-AQS sites. To maximize our data availability, 

we are using measurements from Federal Reference Method and Federal Equivalent Method 

(FRM/FEM, 88101) sites and from non-FRM/FEM (88502) sites (both are also used by the EPA 

for AQI summaries).  15 

We also use the Hazard Mapping System (HMS) fire and smoke analysis product, which 

is produced routinely by the National Oceanic and Atmospheric Administration’s (NOAA) 

National Environmental Satellite and Data Information Service (NESDIS) for the purpose of 

identifying fires and smoke emissions (satepsanone.nesdis.noaa.gov). The HMS product uses 

observations from both geostationary and polar-orbiting satellites. Polygons determined from 20 

satellite visible image analysis are currently categorized as light, moderate and heavy smoke and 

have assigned numerical values to estimate surface smoke concentrations (5, 16, 27 µg m-3). This 

product is only available for daylight hours and each polygon is considered valid for a specific 

time period. We created a gridded surface from all the polygons valid for each day with the 

surface-concentration values suggested at the same 0.25° grid resolution as our gridded 25 

Facebook posts. In grids where there is more than one polygon valid for a day, we take the 

maximum value in each grid location during that day. Data files were available for every day 

during our analysis period except 20 August 2015, although sub-daily smoke plume analysis 

periods could also be missing.  

For aerosol optical depth (AOD) from satellites, we use the Collection 6, MODerate 30 

resolution Imaging Spectroradiometer (MODIS) Level 2 10-km aerosol optical depth (AOD) 
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products from the Terra and Aqua platforms. Terra has a morning overpass (~10:30 AM LT) and 

Aqua has an afternoon overpass (~1:30 PM LT). With a swath width of 2,330 km, the 

instruments provide almost daily coverage of the globe in cloud-free conditions. The MODIS 

algorithm can have difficulty distinguishing thick smoke from cloud (van Donkelaar et al., 

2011), causing some instances of heavy smoke to be erroneously filtered out (although 5 

Collection 6 has made improvements to the algorithm to minimize this misclassification, see 

(Levy et al., 2013)). We average the AOD observations from both instruments on the same 0.25° 

grid and use all quality levels for better coverage. We additionally use the MODIS cloud fraction 

(CF) products (“Cloud_Fraction_Land” and “Cloud_Fraction_Ocean,”) in order to determine the 

presence of clouds and to determine if cloudiness impacts Facebook postings on smoke.  10 

Several models and model frameworks are also routinely used to estimate smoke 

exposure. Here, we use a chemical transport model, the Weather Research and Forecasting 

model with Chemistry (WRF-Chem). The simulation was completed for 5 June – 1 October 

2015. We use Global Forecast System (GFS) meteorology, biogenic emissions from the Model 

of Emissions of Gases and Aerosols from Nature (MEGAN, 8), National Emission Inventory 15 

2011 (NEI) anthropogenic emissions, FINN biomass-burning emissions (Wiedinmyer et al., 

2011), MOZCART aerosol species and chemistry, and (MOZART) chemical boundaries 

(Emmons et al., 2010). Horizontal resolution is 15 km and there are 27 vertical levels. 

Concentrations are output for each model hour, which we then average to provide daily 24-hour 

average surface concentrations.  20 

2.3 Regression Model 

We also present a test case to determine the feasibility and usefulness of including this 

Facebook dataset in a statistical model. We compare two geographically weighted regression 

(GWR) models that use MODIS AOD and WRF-Chem PM2.5 with and without the Facebook 

dataset.  GWR has previously been used in a several different studies to predict surface air 25 

quality (Hu et al., 2013; Song et al., 2014; You et al., 2016). For our test case, we focus on 

Washington state because of the extensive network of surface PM2.5 measurements available for 

validating results. In our regression model, we determine the dependent variable (surface PM2.5 

at each measurement site) from a linear combination of these different predictor variables 

(MODIS AOD, WRF-Chem PM2.5, and gridded Facebook dataset). A separate set of regression 30 

coefficients is determined at each surface monitor location, which are then interpolated across 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2017-26, 2017
Manuscript under review for journal Atmos. Chem. Phys.
Published: 19 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



8 

 

the domain. We use the leave one out cross validation (LOOCV) method to test our models, in 

which the regression coefficients determined at a single monitor are removed from the 

interpolation scheme, and then the resulting PM2.5 predicted by the regression model is compared 

to the observed PM2.5 concentrations.  

 5 

3 Results and Discussion 

3.1 Comparison of Facebook Dataset to Observations 

An example of the data used in this study is given in Figure 1 for 29 June 2015, which 

shows a dense smoke plume from wildfires in Canada causing degraded air quality over the 

Midwestern US and smoke from local fires in the Northwest over Washington, Oregon, and 10 

Idaho. The impact of this smoke plume is evident in the HMS smoke product, the anomalously 

high surface PM2.5 concentrations, the elevated AOD values from MODIS, and in the WRF-

Chem simulated surface PM2.5. The spatial pattern of Facebook postings is somewhat consistent 

with regions of degraded surface air quality, suggesting some people were aware of the degraded 

air quality. The extent of the “Facebook plume” does not extend as far east or as far south as the 15 

smoke plume observed by the satellite products (MODIS AOD and HMS smoke plumes), and 

hotspots in the Facebook surface are centered around the eastern Montana/Canada border. To 

note, the surface measurements also do not show a strong increase in surface concentrations as 

far south (Missouri and Arkansas), suggesting that the plume observed by the satellites might 

have been lofted above the surface. Additionally, while the HMS smoke product suggests only 20 

light smoke over northeastern Montana and AOD from MODIS is only moderately higher than 

the surrounding region, surface PM2.5 concentrations are elevated, which is in agreement with the 

spatial pattern in Facebook posts. In cases where the plume is lofted or smoke is concentrated at 

the surface, this new dataset might be more representative of surface air-quality changes than 

these satellite products.  25 

In Figure 2, we also show example timeseries of Facebook posts (both the raw and 

population-weighted) and other datasets (surface PM2.5 measurements, MODIS AOD, MODIS 

CF, HMS smoke) used in this study for four different locations in the western US: Fort Collins, 

CO; Pinehurst, ID; Bellingham, WA; and Great Falls, MT. From these timeseries, we see the 

main two fire event periods that impacted large areas of the US during the summer of 2015: (1) 30 

the Canadian wildfires in late June through early July and (2) the wildfires in the northwestern 
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US (mainly Washington and Idaho) in August. The magnitude of impact on these different 

metrics for estimating smoke varies by location and event. From the timeseries at Pinehurst, ID, 

where the population was ~1600 in 2015, we can see that population-weighting the Facebook 

timeseries improves the correlation with surface measurements (R2= 0.55 for gridded and R2= 

0.00 for raw). In more populated regions, such as Fort Collins, CO (pop. ~161,000), Bellingham, 5 

WA (pop. ~85,000), and Great Falls, MT (pop. ~60,000); population-weighting the Facebook 

data has little impact on the timeseries and resulting correlation with the surface measurements 

(as shown in Figure 2, where these symbols overlap). Further discussion of these timeseries is 

presented throughout this result section. 

In order to assess how well changes in the fraction of people posting about smoke and air 10 

quality in Facebook statuses represent actual changes in surface air quality, we compare 

timeseries of the percentage of Facebook posts matching our criteria to timeseries of PM2.5 

measured at all of the different surface sites across the summer of 2015, such as shown in the 

example timeseries of Figure 2. The coefficients of determination for all surface PM2.5-

measurement sites with the gridded, population-weighted Facebook posts are shown in Figure 15 

3a, which suggests that the best agreement between the two datasets is in regions that 

experienced heavy smoke and/or anomalously high PM2.5 concentrations during the summer, 

which is to be expected based on our search criteria. For example, the Mt. Hood IMPROVE site 

in Oregon (Figure 3) had 39 measurement days (June 5-September 30) and had 14 days when the 

HMS product suggested smoke over the location. This site provides the best R2 between the 20 

Facebook posting and measured surface PM2.5 with a value of 0.97.  

We also compare agreement of the Facebook dataset against simulated concentrations 

from a chemical transport model simulation (WRF-Chem, Figure 3b), which again shows the 

highest correlation in the Northwest US, which was impacted by wildfire smoke for many days 

in the summer of 2015. We would expect this as our Facebook search criteria is aimed at smoke 25 

and poor air quality and would likely only show changes in postings in regions where air quality 

was noticeably degraded.  

Agreement between MODIS AOD and Facebook posting trends are shown in Figure 3c. 

Because thick smoke can occasionally be classified as cloud in the MODIS algorithm (van 

Donkelaar et al., 2011), we filter out AOD observations where the cloud fraction was > 75 %. 30 

The impact of this filtering is shown in the timeseries of Figure 2. The criterion reduced our 
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number of useable observations but improved correlations at the majority of sites 

(Supplementary Figure 3). Comparisons between Facebook and MODIS AOD are similar 

spatially to WRF-Chem PM2.5 and surface measurements, but coefficients for MODIS AOD and 

Facebook posts are generally worse. However, this satellite product is derived for the full 

atmospheric column and is not necessarily directly relatable to surface concentrations. Smoke 5 

plumes (and transported pollution from other sources) can be lofted above the surface and may 

not impact surface-level exposure where astute Facebook posters would take notice.  

Finally, we also show R2 values between HMS estimated values and our Facebook 

dataset in Figure 3d. Again we see similar trends, where the best agreement occurs in regions 

which experienced numerous smoke days. The correlation values are not as high as for MODIS 10 

AOD or WRF-Chem-simulated PM2.5. The HMS product only provides estimates for smoke, 

which is the primary focus of our search criteria although it also includes phrases related to 

general air quality degradation. Additionally, as with satellite AOD, the HMS product may not 

be representative of actual surface-level exposure. Finally, the HMS product only provides 

categorical estimates of “heavy,” “moderate,” or “light” smoke and likely cannot represent subtle 15 

changes in exposure concentration levels as compared to AOD.  

While we have shown that our new dataset often correlates well with more-traditional 

datasets that have been used to estimate smoke concentrations/exposure, we also investigate 

whether Facebook can be used to improve estimates when combined with these other datasets. In 

Figure 4, we compare how good of a predictor each dataset is at estimating PM2.5. We show the 20 

coefficients of determination for Facebook posts (4a, similar to 3a but for days where CF < 

0.75), MODIS AOD (with CF < 0.75, Figure 4b), the HMS smoke product (Figure 4c), and 

WRF-Chem simulated PM2.5 (Figure 4d) with the surface monitors. From Figure 4, we can 

determine which dataset best correlates with surface measurements in different regions of the 

western US.  25 

We included the CF criterion for this analysis for all datasets. We noted that filtering out 

days with high cloud fraction (CF) improved agreement of Facebook posts and AOD (Figure 2 

and Supplementary Figure 4). This led us to also hypothesize that people may have difficulty 

distinguishing poor air quality on cloudy days, especially farther downwind of a source. To test 

this, we also sampled our Facebook and surface measurement timeseries at each site with 30 

filtering using the MODIS cloud fraction. Compared to correlations between surface 
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measurements and Facebook posts for the full time period, using only the days with CF < 0.75 

improved correlations most noticeably at sites that were generally more than 500 km downwind 

of fires (such as in Colorado, Wyoming, and Utah, Supplementary Figure 4) but had less impact 

at sites closer to the 2015 wildfires (Oregon, western Montana, Washington, and Idaho, see 

Supplementary Figure 1a for fire locations). Cloudiness possibly impacting awareness on 5 

Facebook is seen in the timeseries for Fort Collins, Colorado in Figure 2a, where, although 

concentrations were greater during the July event than the August event, the response on 

Facebook was much less. Bellingham, WA was also impacted by smoke during the same period 

in July, and although lower surface concentrations were measured, the response in Facebook 

posts was greater. We noted however, that during the July event, the MODIS product reported a 10 

cloud cover of 100 % over Fort Collins. For the full time period, filtering out days with a CF > 

0.75, improved the R2 between Facebook posts and surface measurements in Fort Collins from 

0.33 to 0.54. Alternatively, in Great Falls, MT, which had many nearby fires, filtering only 

changed the R2 from 0.77 to 0.79, even though roughly the same number of days met the 0.75 

criteria for exclusion. 15 

We summarize these initial findings in Figure 4e, which shows the dataset that was best 

correlated with the surface measurement at each site (and the R2 had to be greater than 0.5). This 

figure shows that our Facebook posting dataset is better correlated with actual surface 

measurements at the majority of sites in our domain for the given time period (5 June – 30 

September 2015) compared to other datasets that are typically used to estimate exposure. We do 20 

find that MODIS AOD and WRF-Chem PM2.5 are better predictors in regions with low 

populations, such as North Dakota, eastern Montana, and eastern Washington. Additionally, 

WRF-Chem and MODIS AOD are better predictors over much of the eastern US (not shown, R2 

values all less than 0.5), which is dominated by anthropogenic emissions during the time period, 

as these “normal” day-to-day changes in anthropogenic pollution may be less likely to be picked 25 

up by our Facebook posting search criteria. To note, we did not optimize the configuration of our 

WRF-Chem simulation to match surface observations. Changing emissions, meteorology, 

parameterization choices, grid resolution or time steps may have improved surface-concentration 

estimates, but the optimal configuration would likely differ by region and time period. However, 

our results shown in Figure 4 suggest that Facebook posting could be used to help estimate 30 

exposure in conjunction with these other datasets. 
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 However, if Facebook posts are used to estimate exposure, there may be a few 

limitations; because, while trends in Facebook posting seem to represent well the variability in 

surface air quality over our study period at many sites, there is not a simple relationship between 

posting and PM2.5. For one, there did not appear to be a threshold PM2.5 concentration at which it 

was guaranteed that people would start posting, region-wide or at an individual city (e.g. there 5 

were cases with high smoke but little posting such as the July event in Fort Collins, CO). There 

are several potential reasons for this. (1) As noted, on cloudy days, people may not be able to 

distinguish poor air quality, especially if it is from long-range transport where residents are not 

aware of a nearby fire. (2) There could be a point of saturation or response fatigue wherein 

people who have experienced multiple days of smoke may find it less interesting to post about it, 10 

or they could have a cognitive bias that causes them to think that air quality has improved in 

comparison to air quality previously experienced. To test this, we looked also at the timeseries of 

the ratio of % of Facebook posts to surface concentrations and this ratio does appear to decrease 

over time during periods of smoke events lasting several days. A decrease throughout the season 

is only evident at a few sites, although this is difficult to compare since the major smoke event at 15 

most sites occurred in late August and early September with few-to-no smoke events occurring 

afterwards. (3) We noted that occasionally regions with a high Facebook-posting percent was 

centered over areas where the population had experienced poor air quality on preceding days 

rather than the current regions of poor air quality. This time shift could suggest that there could 

sometimes be a lag in either individual’s awareness or in the time it takes to spread information 20 

among community-level social networks. Additionally, there could also be persistence in 

Facebook posts, where air quality might improve in a location but people are still posting about 

it. Conversely, awareness of events could spread through social network more quickly than an air 

quality event (such as a smoke plume) is transported such that individuals are discussing an 

event before it actually impacts them. Quantitatively, this is difficult to assess as it may be more 25 

event related than season-specific. We did compare +/- 1-day lag correlations between Facebook 

posts and surface measurements for all sites that had daily measurements (as opposed to every 

third day). Using the same day provided the best correlation at ~90 % of sites. Slightly better 

correlations were found using the previous day’s measurement at several sites in Utah, and using 

the following day produced better estimates at several sites in Washington and Oregon, where 30 

there were broad regions and extended periods of degraded air quality due to local fires.   
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3.2 Google Trends comparison with surface observations 

We also compared Google trends data to surface measurements of PM2.5. Because of the 

coarse resolution of the aggregated Google Trends data (DMA-level), we chose to compare only 

to surface measurements and not the other gridded datasets. Our results are shown in Figure 5 for 

each search term. As with the Facebook dataset, correlations are best in the northwestern U.S., 5 

specifically, Washington, Montana, and Oregon, states that were heavily impacted by smoke in 

2015. Although we are comparing to total PM2.5, the best correlations were found for not only 

“air quality”, but also “wildfire” and “smoke”, which, as with the Facebook dataset, we might 

expect since wildfire smoke was the source of the most variability in surface PM2.5 during this 

time period. The search terms that are more related to urban pollution (“pollution”, “smog”, 10 

“haze” and “ozone”) have much lower correlations, and sites that do have R2>0.1 are generally 

in urban areas or far downwind of smoke. “Ozone” in particular was not well-correlated with 

PM2.5 measurements (all R2 < 0.22), which should be expected since ozone concentrations and 

PM2.5 concentrations are not always well-correlated (e.g. Reisen et al., 2011).   

We also used the Google Trends data to analyze our Facebook search term criteria since 15 

we were not able to do this within the Facebook dataset. We chose several words that might be 

associated with “air quality” and determined the correlations between each word for each DMA 

as shown in Figure 8. As with the actual concentrations of PM2.5, we find that “air quality” is, in 

general, more associated with “smoke” and “wildfire” than words more commonly associated 

with urban sources like “smog”, “haze”, “pollution”, and “ozone”. In Sachdeva et al. (2016), the 20 

authors found that distance from the fires impacted the content of postings about the fire, we also 

note some differences in our correlation maps based on distance. For example, closer to the fires 

(WA, OR, ID, MT), “air quality” is more associated with “smoke”, while farther away (CO, NV, 

UT, WY), “air quality” is more associated with “wildfire”. At these sites, “air quality” is also 

better correlated with “wildfire” than “smoke”, which may suggest that people are aware of the 25 

impact of the wildfires on air quality, but not able to see smoke. However, Google Trends are 

scaled by popularity in each region and data on only very popular terms are available. This could 

lead to a discrepancy in that the same amount of people may be searching for these terms in 

different regions, but the relative popularity may be very different compared to other search 

terms, especially if there are other physical sources of “smoke” or “air quality” in a region. 30 

“Ozone”, “smog”, and “pollution” (terms that may be more associated with urban air pollution), 
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are not well-correlated with “air quality”, “smoke”, or “wildfires” over our study period; 

however, “haze” is moderately correlated in WA, OR, and CO (Figure 6).  

3.3 Geographically Weighted Regression Test Case 

 As a first case test to determine the usefulness of this Facebook dataset in a statistical 

model, we compared two geographically weighted regression model estimates using MODIS 5 

AOD and WRF-Chem simulated PM2.5 with and without the Facebook dataset. From Figure 4, 

we see that WRF-Chem, MODIS AOD, and this Facebook dataset are all correlated with surface 

PM2.5 in Washington state, and the best correlated variable varies between surface sites. 

Therefore, a regression model could allow us to leverage the strengths from each dataset to 

create an improved estimate.  10 

In Figure 7, we show the results for our regression models with and without the Facebook 

dataset. We see that including the Facebook dataset in the regression model leads to improved R2 

values at many of the sites in Washington (only one site shows a decrease, Figure 7e). 

Additionally, for the full dataset (of all sites and all days), there is an improved R2 (0.66 

compared to 0.58), slope (0.60 compared to 0.52), and a smaller error. While, these 15 

improvements may be small; we find this is in part due to the fact that the Facebook dataset 

explains much of the same variability as WRF-Chem simulated surface PM2.5 (and better 

explains variability in the urban region around Seattle, WA).  

 

4 Conclusions 20 

In this paper, we introduced a novel concept of using de-identified, aggregated counts of 

Facebook posts mentioning smoke, haze, or air quality to determine exposure by comparing to 

traditional datasets and in a regression model. We also looked at Google Trends data for the 

same time period and compared it to surface observations. The Facebook dataset was useful in 

regions meeting two conditions: (1) the region was impacted by wildland-fire smoke, and (2) 25 

there was a large-enough population posting to Facebook.The Google Trends data was also best 

correlated in regions impacted by smoke, however, it is aggregated at a much coarser resolution 

(DMA-level), therefore the impact of population density is unclear. For regions that meet these 

two criteria, the Facebook dataset agreed well with more-traditional datasets routinely used for 

estimating smoke concentrations. In fact, the dataset was often a better predictor of surface PM2.5 30 

than several of these other methods and/or datasets (MODIS AOD, HMS smoke plumes, WRF-
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Chem simulated PM2.5). Therefore, this Faceboook dataset could be useful in determining spatial 

extent of exposure between surface monitors.  

In further investigating regions and time periods of poor agreement, we noted that the 

cloud cover negatively impacted our correlations, suggesting that some environmental factors 

might impact people’s awareness. We also found that in some regions, correlation improved 5 

when comparing to the previous or following day, possibly suggesting some influence of social 

media on awareness. Some of the disagreement could also be due to our search criteria, which 

could be further refined. Other studies, which have relied on Twitter messages, have been able to 

optimize this process by examining subsets of individual posts (“Tweets”) to test for false 

positives. However, again, because this dataset does not provide information on individual posts, 10 

this is difficult to do solely within this dataset, but we do plan to test different search criteria in 

the future to aid in optimizing our dataset.    

Even with some of these limitations, we demonstrated that this Facebook dataset has 

strong potential to be used to estimate exposure to poor air quality. Sachdeva et al. (2016)  has 

shown similar results with Twitter data, but only for a single fire in California. We believe that 15 

Facebook could provide some specific advantages over Twitter. Facebook is the most widely 

used social-media site in the US, with 70 % of its participants active daily (Duggan et al., 2015), 

compared to 36 % for Twitter. Additionally, only 1 % of Twitter posts are geo-referenced (Thom 

et al., 2013), and Google Trends relies on a subset of searches for a large region. In Sachdeva et 

al. (2016), the actual analysis only included 1297 tweets from a 45-day period covering a region 20 

of 40,000 km2 in California and Nevada, and their statistical model was built from 705 tweets for 

a 37-day period covering a 7,500 km2 area. With a broader user-base, Facebook could potentially 

provide better spatial resolution over a broader region. Therefore, this dataset of de-identified, 

aggregated counts of posts, could be very useful for actually estimating population-level 

exposure. While we showed that Google Trends data was also moderately well-correlated with 25 

surface PM2.5 in the Northwest, results were only available for DMAs, of which there are only 

210 in the U.S., leading to significantly less spatial information in the Google Trends data than 

with our Facebook dataset (which has results for >20,000 cities in the U.S.). In 2015, there was a 

broad region of smoke over much of the U.S.; therefore, correlations with Google Trends may be 

much higher than if we compared to years with only localized smoke events. Finally, we 30 

presented a first test case using Facebook in a statistical model to predict surface concentrations 
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in Washington state for June – September 2015, showing improvements in slope and R2 values 

and a reduced error in predicted PM2.5. We plan to extend this work in order to provide improved 

estimates of smoke exposure for the whole western U.S. for the 2015 summer, which will then 

be used to quantify the health responses associated with exposure to wildfire smoke. Improving 

the understanding of these specific health effects can potentially aid the public and decision-5 

makers on when and how to take measures to reduce exposure. While social media will not be 

able to completely replace traditional methods of estimating exposure, social media datasets 

could currently improve estimates without the costly investment of computer modeling or 

additional surface monitors. Using social media datasets as a proxy for exposure, also lends itself 

to analysis of people’s response and understanding of smoke exposure (e.g. 42), which cannot be 10 

measured by traditional exposure methods.  

  

5 Data Availability 

The 24-hour average concentrations of total PM2.5 mass are available from the EPA Air Quality 

System at epa.gov/aqs, and the IMPROVE PM2.5 data are also available at 15 

views.cira.colostate.edu/fed/. The Collection 6, MODIS Level 2 10-km AOD products from the 

Terra and Aqua platforms are available at ladsweb.nascom.nasa.gov. The HMS fire and smoke 

analysis product is available through satepsanone.nesdis.noaa.gov. Google trends data are 

available at google.com/trends. Our WRF-Chem model output (daily, 24-hour average surface 

concentrations) is available at http://hdl.handle.net/10217/177042. To preserve the privacy of 20 

Facebook users we are unable to provide raw Facebook data, but we provide daily maps of the 

raw and gridded Facebook dataset at http://hdl.handle.net/10217/177043.  
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Figure 1. Example of datasets for 29 June 2015. a.) Population-weighted (Equation 1) percent of 

Facebook posts meeting criterion (white signifies regions with weighted population < 10), b.) 

gridded HMS smoke plumes overlaid with 24-hr average surface PM2.5 concentrations from 

surface measurement sites, c.) gridded, unfiltered MODIS-Aqua and MODIS-Terra AOD (white 5 

signifies no valid observation), and d.) WRF-Chem simulated 24-hr average surface PM2.5 

concentrations.  
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Figure 2. Timeseries of measured surface PM2.5 concentrations (red), “raw” percent of Facebook 

posts matching criteria (blue), gridded and population-weighted percent of Facebook posts 

(green), MODIS AOD (purple), days with HMS-denoted light (light gray) and moderate/thick 

(dark gray) smoke, and days where the MODIS cloud fraction was greater than 0.75 (black 5 

diamonds) at (a) Fort Collins, CO; (b) Pinehurst, ID; (c) Bellingham, WA; and (d) Great Falls, 

MT for 5 June – 27 October 2015.  R2 values for each dataset with the surface measurement are 

given along with the number of days available for the calculation noted in parentheses.  
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Figure 3. R2 values for % Facebook posts and a.) IMPROVE and EPA-AQS surface 

measurements of PM2.5 (for sites with > 35 days of measurements), b.) WRF-Chem simulated 

PM2.5, c.) MODIS AOD when cloud fraction was below 0.75 and d.) HMS smoke for the period 

of 5 June – 30 September 2015.    5 
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Figure 4. R2 values for surface measurements of PM2.5 with a.) Facebook (CF<0.75), b.) MODIS 

AOD (CF<0.75), c.) HMS smoke, and d.) WRF-Chem simulated PM2.5, for the period of 5 June 

– 30 September 2015. e.) Product (HMS Smoke, WRF-Chem PM2.5, MODIS AOD, or Facebook 

posts) that has the highest R2 compared to surface measurements for the time period of 5 June – 5 

30 September 2015 (sites are shown only if the resulting R2 > 0.5). Number of sites in western 

US (domain shown) where product has highest R2 (and R2 > 0.5) is given in parentheses. 
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Figure 5. R2 values at each measurement site for surface measurement and Google Trend search 

trend (a) “air quality”, (b) “wildfire”, (c) “smoke”, (d) “pollution”, (e) “haze”, (f) “smog” and (g) 

“ozone.” Only sites where R2 > 0.1 are shown. The 48 DMAs considered are shown in (h). 
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Figure 6. R2 values for pairs of Google Trends search terms (a) “air quality” and “wildfire”, (b) 

“air quality” and “smoke” (c) “air quality” and “haze”, (d) “wildfire” and “smoke”, (e) “wildfire” 

and “haze” and (f) “smoke” and “haze” for June –September 2015. 
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Figure 7. R2 values at each measurement site for surface PM2.5 and regression model estimate (a) 

using MODIS AOD and WRF-Chem PM2.5 and (c) using MODIS AOD, WRF-Chem PM2.5, and 

Facebook dataset for 5 June – 30 September, 2015 and the difference in R2 between the two 

regression models (with Facebook data- without Facebook data). Also, scatterplots for all daily 5 

measured PM2.5 and corresponding regression model estimates in the domain (b) using MODIS 

AOD and WRF-Chem PM2.5 and (d) using MODIS AOD, WRF-Chem PM2.5, and Facebook 

dataset. 
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